第三百零五章 高斯的宝藏(中)(7.6K)
第三百零五章 高斯的宝藏(中)(7.6K) (第1/2页)“......”
看着信誓旦旦、满脸自己这波血赚的高斯。
徐云轻轻张了张嘴,欲言又止。
他其实很想告诉高斯一件事:
以法拉第这个鸽子在历史上的更新速度来看,他所谓的加更很可能只是画饼来着......
徐云上辈子在写的时候也认识几位画饼高手,可没少见过这种事儿。
比如裴屠狗啦、白特慢啦、天涯月照今等等。
当然了。
有画饼高手,自然也有诚信之辈。
例如徐云自己就曾经在2033年的时候,以日更三万的战绩获得了大量读者的赞誉。
不过正常情况来判断,法拉第是后者的概率几近于无。
在原本历史中。
他别说普通更新了,甚至连英国皇家学会请他写的3000多个字的教材评述都能拖更两年。
因此高斯大概率是被这位鸽子给忽悠过去了......
但话未出口,徐云转念一想。
要是自己把这件事告诉了高斯,那么恐怕也就没啥机会换取高斯的手稿了。
因此他生生止住了将出口的内容,只是略显尴尬的干笑了两声,便装作一副毫不知情的样子,将目光投放到了面前的手稿上。
随后看着这些塞满皮箱的手稿。
咕噜——
徐云重重的咽了口唾沫,眼中闪过了一丝明显的激动。
老天爷叻,这tmd可是高斯的手稿!
纵观人类科学史。
在中古代的国内外,但凡是有名的行业大家,基本上都会留下一些自己所编写的著作。
例如本土有杨辉的《杨辉算法》,老苏的《本草图经》《新仪象法要》云云。
国外则有《沙的计算》、《螺线》等等。
而随着科学水平的发展。
当时间线推移到16世纪之后,手稿,逐渐成为了一种记录科学家成果的另类载体。
比起‘著作’。
手稿的随意性无疑要高出许多,准确性和权威性则要低一些。
例如上面记载的可能是某某学者想到的灵感、天马行空的解题思路,甚至无聊时随意留下的涂鸦。
就像后世一些学生记的课堂笔记一样。
有些时候过去一两个月,可能连创作者本人都看不懂手稿上的内容。
但另一方面。
手稿中却同样可能蕴藏着某些惊人的成果。
比如说某些创作者已经解决、但不确信是否存在错漏的数算答案。
又比如因为时局所限无法发布的成果等等.....
在人类历史中。
存留手稿最多的数学家是欧拉,这位也是个堪称挂逼的神人。
他13岁就入读了巴塞尔大学,15岁大学毕业。
16岁获硕士学位,19岁开始发表论文,26岁时担任了彼得堡科学院教授。
他的一生一生写下了886种书籍论文,平均每年写出800多页。
彼得堡科学院为了整理他的著作,足足忙碌了47年。
更挂逼的是。
欧拉在30岁的时候右眼就差不多失明了,只能靠左眼看东西。
接着他的左眼又得了白内障,在59岁那年为了治疗白内障进行手术,又被主治医生戳瞎了左眼,至此左右眼彻底失明。
结果在双目失明的情况下。
欧拉依旧以口述形式完成了几本书和400多篇论文,解决了让小牛头痛的月离等复杂分析问题。
1911年瑞士自然科学基金会组织编写了一本《欧拉全集》,计划出84卷,每卷都是4开本——也就是一张报纸大小,一卷接近300页......
截止到2022年,这本书已经出到了74卷,亚马逊有售,叫做《OperaOmnia》。(./这是欧拉论文的检索网址,防杠附录)
更更更挂逼的是。
后世现存的欧拉手稿还不是欧拉的全部遗作你敢信?
没错,不是全部。
他有相当部分手稿在1771年的彼得堡大火被焚毁了,现存的只是部分而已。
所以有些时候你真的不能不怀疑某人是不是穿越者,因为他们的履历实在是太离谱了......
而另一方面。
如果说欧拉是当之无愧的写稿机器。
那么最具价值手稿创作者的头衔,就无疑要归属于高斯了。
比起欧拉那难以计数的手稿数量,后世保存下来的高斯手稿其实并不多,只有20部笔记以及大约六十多封的来去信件。
但即便只是这么点儿的手稿,直到徐云穿越的2022年,都有一大堆尚未被破解出来呢。
比如此前提过的曼纽尔·巴尔加瓦。
他获得2014年菲尔兹奖的项目,就是从高斯《算术探索》中二次型有关的章节受启发而做出来的。
当然了。
后世之所以有许多手稿无法归纳出来,很大部分原因要归咎于一些创作者的字写得太潦草了......(.edu/~jdnoodies/Zuriotebook/,这是爱因斯坦相对论的手稿,老爱的字哟......)
顺带一提。
这些手稿有些在书店内可以买到复印版,国内比较常见的是钱老、黄纬禄先生的笔迹,钱老的字超级超级好看。
同时与欧拉一样。
高斯也有部分手稿在死后遗失了,不过其中大部分是人祸——高斯和韦伯相交莫逆,韦伯和高斯的女婿都是哥廷根七君子之一。
因此在高斯死后,他的故居遭遇过多次非法闯入,遗失了不少东西。
黎曼在写给戴德金的信件中便提及过高斯书房被暴力破坏的事情。
那些流出的手稿有些进入了收藏家的手中,2017年便有一位西班牙的收藏家将两本笔记交还给了哥廷根大学。
这种死后不得安生的事情在科学界其实很常见,最倒霉的其实不是高斯,而是老爱:
这位科学史上和小牛争第一争到狗脑子快被打出来的大佬,在死后七个小时便被一个叫哈维的医生偷走了真的脑子,并且切成了240块。
直到老爱去世四十二年后,哈维才将老爱的大脑切片交给普林斯顿大学医院。
这也是后世有些会调侃切片的真正根由,虽然估摸着很多写到“切片”二字的作者本人并不知道这么回事......
想到这里。
徐云不由幽幽叹了口气,将思绪收回到现实。
他先是从身上取出了实验室用的手套——这年头的手套都是加了碱式碳酸铅的乳胶手套,成本相对较高,所以做无毒实验的时候基本上都是自带并且反复使用。
戴好手套后。
徐云便弯下身,开始翻找起了高斯的手稿。
“高等分析随想......”
“拓扑学中的欧拉示性数问题......”
“复变函数论的路径释疑......”
高斯放在皮箱里的手稿很多,名目极其复杂,不过徐云的目标却也相当明确:
他只想要那些后世遗失或者有特殊意义的手稿原件。
至于非欧几何这种1850年没发布、但后世已经完全形成体系的手稿,绝非他此行的目标。
过了一会儿。
徐云忽然眼前一亮,拿出了一卷比较靠内的手稿:
“咦?”
只见这份手稿的封条上,赫然写着一行字:
《亲和数计算》。
亲和数。
这个词的英文名叫做friendlynumber,所以有时候也会被翻译成友好数或者相亲数。
它的释意很简单:
彼此的全部约数之和(本身除外)与另一方相等的两个正整数,比如220和284。
举个例子。
上过小学的朋友应该都知道。
220的约数为:
1、2、4、5、10、11、20、22、44、55、110,和为284;
而284约数为:
1、2、4、71、142,和正好为220。
故220和284是一对亲和数。
这个词最早出现在公元前320年,源自西方文明发源地之一的古希腊。
当时的学术巨头毕达哥拉斯对数论的研究深不可测,他是“万物皆数”的提出者。
他的门徒受他影响,对数的研究更是“走火入魔”,尝试从世界的任何事物中寻找数。
结果一天。
他的门徒突发奇想,问了毕达哥拉斯一个问题:
老师,我结交朋友时,会存在数的关系吗?
结果毕达哥拉斯说了一句很有名的话:
朋友是你灵魂的倩影,要像220与284一样亲密,我中有你,你中有我。
这句话,便是亲和数的万恶之源。
亲和数问世以后毕教主并没有歇着,而是带领着毕氏学派乘机大肆宣扬起了“万物皆数”。
不过很尴尬的是。
毕教主宣传了几十年,研究了几十年,亲和数依然还是只有220和284。
直到毕教主去世,人们对于亲和数的认知依然停留在220和284。
而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。
所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。
随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。
直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:
无穷的自然数中亲和数一定不止一对!
(本章未完,请点击下一页继续阅读)